

Philadelphia University Mechatronics Engineering Department Faculty of Engineering First Semester 2015/2016

Course Syllabus			
Course Title	Advanced Measurement Systems and Sensors		
Course Number	0640732		
Course Level	1st year Graduate Level		
Class Time	15:00 - 18:00 Monday		
Instructor	Prof. Kasim Al-Aubidy		
email	kma@philadelphia.edu.jo and alaubidy@gmail.com		
website	http://www.philadelphia.edu.jo/academics/kaubaidy/		
Prerequisites	BS Degree in Mechatronics or related field		
Office Hours	09:00-10:00 Sun/Tues/Thurs Office: 6700		
Text Book	Lectures will be based on several resources (See References)		

Course Description:

The course is based on mechatronic philosophy, regarding mechanic, electronic and informatics as a whole. After finishing the course the student should be able to:-

- Analyze measurement- and control problems,
- Design and/or select the best suited sensors for a specified problem, regarding range, accuracy, dynamic behavior, environment requirements etc.
- Perform all necessary calculations regarding the sensor implementation and the analog and digital signal processing required.

Course Objectives:

On completing the course, students will be able to have to following skills:

- Knowledge and understanding
 - A1- Describe the concepts of different measurement & Mechatronics systems used in industry.
 - A2 Describe the function, suitability of different sensors and Transducers.
 - A3- Know and understand in depth the concepts of Input/ Output Signal conditioning

Intellectual skills

- B1- Analyze, Design and/or select the suitable sensors for a given system.
- B2- Analyze & design the signal conditioning circuits.
- B3– Conduct research in measurement system and sensor field to generate novel techniques.
- Professional and practical skills:
 - C1- Carry out calibration and error estimation of measuring devices
 - C2- Design and assessment of the sensors used in industrial systems.
 - C3- Improve system performance
- General and transferrable skills
 - D1- Critical thinking.
 - D2- Team work
 - D3- Self learning.

Philadelphia University Mechatronics Engineering Department Faculty of Engineering First Semester 2015/2016

Course Academic Calendar			
lecture	Subject	Notes	
1	Introduction: Mechatronics systems and Measurement systems, Sensors, Signals, and Systems; Sensor Classification; Units of Measurements.	Ref 1: Chap 1 Ref 2: Chap 16	
2	Sensor Characteristics: Transfer Function; Calibration; Accuracy; Hysteresis; Nonlinearity; Saturation; Repeatability; Dead Band; Resolution;	Ref 1: Chap3	
3	Sensor Characteristics: Dynamic Characteristics; Environmental Factors; Reliability; Application Characteristics; Uncertainty	Ref 1: Chap3	
4	Physical Principles of Sensing: Electric Charges, Fields, Capacitance, Magnetism, Induction, Resistance, Piezoelectric Effect, Hall Effect, Thermoelectric Effects, Temperature and Thermal Properties of Materials, Heat Transfer, Light, Dynamic Models of Sensor Elements.	Ref 1: Chap4	
5	Interface Electronic Circuits: Input Characteristics of Interface Circuits, Amplifiers, Light-to-Voltage Converters, Excitation Circuits	Ref 1: Chap5	
6	Interface Electronic Circuits: Analog-to-Digital Converters, Bridge Circuits, Data Transmission, Noise in Sensors and Circuits.	Ref 1: Chap5	
7	Motion Detectors: Ultrasonic Detectors, Microwave Motion Detectors, Capacitive Occupancy Detectors, Triboelectric Detectors, Optoelectronic Motion Detectors, Optical Presence Sensors, Pressure-Gradient Sensors.	Ref 1: Chap6	
8	Position, Displacement, and Level: Potentiometric Sensors, Capacitive Sensors, Inductive and Magnetic Sensors, Optical Sensors, Ultrasonic Sensors, Radar Sensors, Thickness and Level Sensors, Pointing Devices.	Ref 1: Chap7	
9	Velocity and Acceleration: Accelerometer Characteristics, Capacitive Accelerometers, Piezoresistive, Piezoelectric Accelerometers, Thermal Accelerometers, Gyroscopes, Gravitational Sensors.	Ref 1: Chap8	
10	 Force, Strain, and Tactile Sensors: Strain Gauges, Tactile Sensors, Piezoelectric Force Sensors. Pressure Sensors: Concepts of Pressure, Mercury Pressure Sensor, Bellows, Membranes, and Thin plates, Piezoresistive Sensors, Capacitive Sensors, VRP Sensors, Optoelectronic Pressure Sensors, Indirect Pressure Sensor, Vacuum Sensors, 	Ref 1: Chap9,10	
11	Flow Sensors: Basics of Flow Dynamics, Pressure Gradient Technique, Thermal Transport Sensors, Ultrasonic Sensors, Electromagnetic Sensors, Breeze Sensor, Coriolis Mass Flow Sensors, Drag Force Sensors, Dust and Smoke Detectors,	Ref 1: Chap11	

Philadelphia University Mechatronics Engineering Department Faculty of Engineering First Semester 2015/2016

12	Acoustic Sensors: Resistive Microphones,	Ref 1: Chap12	
	Condenser Microphones, Fiber-Optic Microphone,		
	Piezoelectric Microphones, Electret Microphones, Dynamic		
	Microphones, Solid-State Acoustic Detectors,		
13	Humidity and Moisture Sensors: Concept of Humidity,	Ref 1:	
	Capacitive Sensors, Electrical Conductivity Sensors, Optical	Chap13, 14	
	Hygrometer, Oscillating Hygrometer.		
	Light Detectors: Introduction, Photodiodes, Phototransistor,		
	Photoresistors, Cooled Detectors, Image Sensors, Thermal		
	Detectors, Gas Flame Detectors.		
14	Temperature Sensors: Coupling with Object, Temperature	Ref 1: Chap16	
	Reference Points, Thermoresistive Sensors, Thermoelectric		
	Contact Sensors, Optical Temperature Sensors, Acoustic		
	Temperature Sensor, Piezoelectric Temperature Sensors.		
15	Chemical Sensors: Chemical Sensor Characteristics,	Ref 1: Chap17	
	Biochemical Sensors, Multisensor Array.		
16	Smart sensors: Smart sensor systems (Definition – Different	Ref 3: Chap 4	
	types- new trends)		
FINAL EXAMS			

Assessment Instruments

Allocation of Marks				
Midterm Exam	30%			
Assignments	10%			
Project	20%			
Final Exam	40%			

References:

- 1. Jacob Fraden, "Handbook of Modern Sensors; Physics, Design, and Applications", Fourth Edition, Springer Press 2010.
- 2. Ernest O. Doebelin, " INSTRUMENTATION DESIGN STUDIES", CRC Press, Taylor & Francis Group, 2010.
- 3. Robert Bishop, "The Mechatronics Handbook", Second Edition, CRC Press 2002.
- 4. Pavel Ripka and Alois Tipek (editors), "Modern Sensors Handbook", ISTE Ltd, 2007.
- 5. Devdas Shetty & Richard Kolk, "Mechatronics System Design", 1997.
- 6. David G. Aldatore & Michael B. Histand, "Introduction to Mechatronics and Measurement Systems", McGraw Hill, 2004.